Python PRAW Pandas NLP

Python Reddit Analysis Tutorial: From Data Collection to Insights

By @python_analyst | February 14, 2026 | 22 min read

This tutorial walks through a complete Reddit analysis pipeline using Python. We'll collect data, clean it, analyze sentiment, and visualize results.

Environment Setup

terminal requirements.txt
# Install required packages
pip install praw pandas numpy matplotlib seaborn
pip install textblob nltk wordcloud
pip install scikit-learn

Step 1: Data Collection with PRAW

python collect_data.py
import praw
import pandas as pd
from datetime import datetime

# Initialize Reddit client
reddit = praw.Reddit(
    client_id='YOUR_CLIENT_ID',
    client_secret='YOUR_CLIENT_SECRET',
    user_agent='RedditAnalysis/1.0'
)

def collect_posts(subreddit_name, query, limit=500):
    """Collect posts matching query from subreddit"""
    subreddit = reddit.subreddit(subreddit_name)
    posts_data = []

    for post in subreddit.search(query, limit=limit):
        posts_data.append({
            'id': post.id,
            'title': post.title,
            'selftext': post.selftext,
            'score': post.score,
            'upvote_ratio': post.upvote_ratio,
            'num_comments': post.num_comments,
            'created_utc': datetime.fromtimestamp(post.created_utc),
            'author': str(post.author),
            'url': post.url
        })

    return pd.DataFrame(posts_data)

# Collect data
df = collect_posts('technology', 'artificial intelligence')
print(f"Collected {len(df)} posts")
Output: Collected 500 posts

Step 2: Data Cleaning

python clean_data.py
import re

def clean_text(text):
    """Clean Reddit post text"""
    if pd.isna(text):
        return ""

    # Remove URLs
    text = re.sub(r'http\S+', '', text)
    # Remove special characters
    text = re.sub(r'[^\w\s]', '', text)
    # Lowercase
    text = text.lower()
    # Remove extra whitespace
    text = ' '.join(text.split())

    return text

# Apply cleaning
df['clean_title'] = df['title'].apply(clean_text)
df['clean_text'] = df['selftext'].apply(clean_text)

# Combine for analysis
df['full_text'] = df['clean_title'] + ' ' + df['clean_text']

Step 3: Sentiment Analysis

python sentiment.py
from textblob import TextBlob

def get_sentiment(text):
    """Calculate sentiment polarity (-1 to 1)"""
    if not text:
        return 0
    blob = TextBlob(text)
    return blob.sentiment.polarity

def categorize_sentiment(score):
    """Convert score to category"""
    if score > 0.1:
        return 'positive'
    elif score < -0.1:
        return 'negative'
    else:
        return 'neutral'

# Apply sentiment analysis
df['sentiment_score'] = df['full_text'].apply(get_sentiment)
df['sentiment'] = df['sentiment_score'].apply(categorize_sentiment)

# View distribution
print(df['sentiment'].value_counts())
neutral 245
positive 178
negative 77
Pro Tip: For production analysis, consider using more sophisticated sentiment models like VADER (optimized for social media) or transformer-based models. TextBlob is good for prototyping but may miss nuance.

Step 4: Visualization

python visualize.py
import matplotlib.pyplot as plt
import seaborn as sns

# Sentiment distribution
plt.figure(figsize=(10, 6))
sns.countplot(data=df, x='sentiment', palette='viridis')
plt.title('Sentiment Distribution in Reddit Posts')
plt.savefig('sentiment_dist.png')

# Sentiment over time
df['date'] = df['created_utc'].dt.date
daily_sentiment = df.groupby('date')['sentiment_score'].mean()

plt.figure(figsize=(12, 6))
daily_sentiment.plot(kind='line')
plt.title('Average Sentiment Over Time')
plt.savefig('sentiment_time.png')

Skip the Coding

Get sentiment analysis and insights without writing code using reddapi.dev's built-in AI analysis.

Try No-Code Analysis

Complete Analysis Pipeline

Step Tools Output
Data Collection PRAW Raw DataFrame
Cleaning Pandas, regex Clean text columns
Sentiment TextBlob/VADER Sentiment scores
Visualization Matplotlib, Seaborn Charts, reports

Frequently Asked Questions

What's the best sentiment analysis library for Reddit?

VADER (Valence Aware Dictionary and sEntiment Reasoner) is optimized for social media and handles slang, emojis, and informal language better than TextBlob. For best accuracy, fine-tuned transformer models like BERT work well but require more resources.

How do I handle rate limits during collection?

PRAW handles most rate limiting automatically. For large collections, add sleep between requests, use the limit parameter, and implement checkpoint saving to resume interrupted collections.